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OUTLINE
• Analog (not Digital)
• Some General Applications
• Microwave Link Overview

– Intensity Modulation
– Photoreceivers
– Link Comparisons
– Link Noise

• Performance Improvement
– Electrical Predistortion
– Optical Linearization Example
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Digital or Analog?
• Bulk of fiber optics communications associated with 

DIGITAL communications
– Fast switching and low pulse distortion determine link fidelity

• Certain applications not suited to digital:
– Bandwidth too high to be effectively digitized
– System complexity better suited toward simpler modulation (size,

weight, power constraints)

• Whatever the system, the primary distinction between digital 
and analog is linearity
– Analog/Microwave links depend upon low distortion to achieve high 

fidelity
DIGITAL = NONLINEAR

ANALOG = LINEAR
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Microwave Link Applications
• Phased Array Communications and Radar

– Narrowband RF feeds directly to antenna arrays
– Lower weight, lower complexity
– True Time Delay beamsteering

• Antenna and Signal Remoting
• Direct-RF over longer distances (many km)
• Reliable alternative to wireless in fixed services

• Electronic Warfare / SIGINT / ELINT
– Fiber-Towed Decoys provide very high bandwidth
– Secure Comms (EMI hard)

• Connection to passive sensors (listening)
• Remoting personnel from active sensors (protection)



Linear Photonics, LLC
IEEE North Jersey Section 2004 MTT/AP Symposium

5

Microwave Link
• We mean:

“Characterized by an RF-input and an RF-
output”
– Necessarily has a method of modulating and 

demodulating an optical carrier, and some fiber 
in between

– Today’s technology dominated by:
• Intensity modulation of semiconductor lasers
• Photodetection using PIN or avalanche photodiodes
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Intensity Modulation
• Direct

– Laser diode is modulated directly
• External

– Laser source drives a separate optical 
component
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Direct Intensity Modulation
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External Modulation
• A CW optical signal is intensity modulated 

via a field-dependent optical medium
• Microwave modulation speeds can be 

achieved with 2 major methods:
– Electro-Optic Modulation

• Field-dependent change in optical index (electo-
optic effect)

– Electro-Absorption Modulation
• Field-dependent change in optical attenuation
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Electro-Optic Modulation
• Index along propagation axis is dependent 

on applied field (modulating signal)
– Electro-Optic effect can be realized in Lithium Niobate

(LiNbO3), InP, and other crystal structures, i.e. KDP 
(KH2PO4) 

• Mach-Zehnder Modulator 

Vm (RF + Bias)

Optical
Propagation

• Propagation constant of the beam in 
the lower leg is retarded due to 
transverse electric field – experiences 
less phase shift.

• Optical intensity (power) is 
modulated by the applied RF signal

Diffused Optical Waveguide on LiNbO3 substrate
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Mach-Zehnder
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Optical Output Power:

Im = max output intensity
typically 3 to 4 dB below input

Vm = bias voltage

# = phase offset (shift from origin) 
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Quadrature Analog CW:

OMI = Optical Modulation Index

• Optical Output power follows cos2 function 
o Caused by adding 2 signals of differing phase

• V" is DC voltage that causes 180° phase rotation
o Depends on crystal physics and electrode length 
o Corresponds to “min” and “max” output power
o Digital Modulation: variation between min and max

• Analog Modulation: Bias at Quadrature (shown)
o Results in linear intensity modulation
o Slope = 1 at quadrature point
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Electro-Absorption
• Absorption of optical signal dependent on applied 

bias 
– Transmission follows exponential relationship with 

applied field
• Exponential f(Vm) is dependent on device length, carrier 

confinement, and instantaneous change in absorption

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2 2.5 3

Reverse Bias (V)

Relative Transmission

)()( Vmf
m eVP "#

N

P

ia

Vm

Pin Pout



Linear Photonics, LLC
IEEE North Jersey Section 2004 MTT/AP Symposium

12

Modulation Summary

Highest

Similar to 
direct mod

Lowest

SIZE
WEIGHT
POWER

40+ GHz

40+ GHz

< 12 GHz
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MODULATION 
FREQUENCY

HighestWell-defined 
(sin curve). 
Operation at 
quadrature 
provides 2nd-
order null. 

Highest: requires 
source laser, 
large modulator, 
plus optical and 
electrical 
controls for bias 
locking

ELECTRO-
OPTIC (MZM)

Higher, 
comparable 
to EOM
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Linearity, but 
may have 2nd-
and 3rd-order 
null operating 
points

Moderate: 
requires separate 
source laser and 
small modulator

ELECTRO-
ABSORPTION

LowestPoor 2nd and 
3rd-order 
performance

Low: one optical 
component 
(laser)

DIRECT

COSTLINEARITYCOMPLEXITYTYPE
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Photodetection
• P-I-N diodes are most common

– Intrinsic bandwidth limited by diode capacitance
– Package and launch considerations may also limit 

performance
• 25 GHz bandwidth from lateral PIN
• 50+ GHz from waveguide PIN

iout

VDC

Iave

PRPI *#)(

R = responsivity (amps/watt)
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Photoreceiver Response

MPR-series Photoreceiver

O/E Response and Return Loss of MPR0020 photoreceiver
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Closing the Link
• Typical performance

• Performance relative to 0 dBmo incident receiver power (optical budget is equal to 
typical transmitter optical output power, or the amount of optical attenuation between Tx
and Rx).
• Results shown are typical for broadband links to the bandwidth indicated.  Narrowband 
microwave links can achieve proportionately higher performance in gain and DR. 
• 1 dB decrease in optical attenuation results in 2 dB increase in RF Gain.
• 1 dB decrease in optical attenuation results in noise figure reduction of from 0 to 2 dB, 
dependent on RIN, shot, or thermal limited link. 

Link Type
Low Freq 

Gain
Operational 

BW
Slope over 

BW Input IP3 Noise Fig SFDR3
Optical 
Budget

dB GHz dB dBm dB dB Hz^2/3 dB

Direct -32 3 -1 36 40 113 7

EAM 1 -35 15 -3 23 40 105 7

EOM       
(Vpi = 5 V) -36 20 -8 23 40 105 8

EAM 2 -30 30 -3 18 40 101 3
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Link Examples

15 GHz Electroabsorption Transmitter
MPR0118 18 GHz Receiver

Broadband Mach-Zehnder Transmitter
40 GHz Waveguide PIN Receiver

25 GHz Electroabsorption Transmitter
APR0020 Post-Amplified Receiver

25 GHz Electroabsorption Transmitter
MPR0020 Receiver
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Modulation Summary
• Performance Limiting Factors

– Linear Factors
• Microwave Launch

– Laser diode and EAM diode are low-impedance
» Fano’s Rule
» Packaging

– MZM functionality dependent on interaction length of optic and 
electric fields

» Traveling-Wave Launch with RF termination is inherently 
inefficient

• Inherent Bandwidth
– Limited by device capacitances; smaller devices = lower power

• Noise
– Nonlinear Factors

• Intermodulation Distortion
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Noise
Output Noise of F/O Link
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• Total output noise is 
related to optical 
received power:

2:1 in RIN region
1:1 in shot region
0 in thermal region

• Gain maintains 2:1 
relationship with optical 
drive (assuming linear 
receiver)

• Resulting link noise 
figure is best at RIN 
limit.  
• Minimum value 
depends on laser RIN 
noise

Link Noise Figure and Dynamic Range vary with optical power 
– defined in conjunction with the operational system
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Performance Requirements
– Communications

• Multi-carrier, complex waveforms, moderate dynamic range, high 
bandwidth

– Requires very high linearity, lower drive levels

– Radar
• Mostly single-carrier, simple waveforms, lower dynamic range, 

lower bandwidth
– Requires moderate linearity, can drive to higher levels
– Distinction between transmit and receive side

– EW
• Ultra-wide bandwidth drives need for high dynamic range

• Improvements in SFDR will broaden application 
opportunities for microwave fiber optics
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Performance Improvement
• Linearization Techniques

– Linearization improves nonlinear distortion; 
increases dynamic range

– Major techniques under study include optical, 
electrical, and combinatorial approaches

• Electrical: aim is to cancel distortion products by 
providing conjugate distortion inputs

– Operates in RF domain
– Predistortion, Feedforward

• Optical: generally more complex
– Operates in optical domain – inherently wide-band
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Electrical Predistortion
• Predistortion Linearization has long history in 

broadcast power amplifiers; SSPAs, TWTAs, 
klystrons, space and ground station equipment
– Generally much less complexity than optical or 

combinatorial systems
• Does not rely on sampled waveforms
• Bandwidth is the major challenge

– The aim is to compensate for the gain and phase 
compression of the nonlinear system by providing a 
cascaded element function that has the opposite gain and 
phase characteristic: gain and phase expansion
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The Multi-Octave Problem
• Predistorter tends to generate 2nd- and 3rd-

order nonlinearities
– 2nd-order terms may tend to worsen performance 

for > octave bandwidth
• Even terms not in the proper phase to cancel

• Ongoing effort to develop predistorters that 
generate only 3rd-order components and 
operate over multi-octave bandwidth
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Wideband Predistorter

Small Signal

Large Signal

• Broadband performance from generic 
predistorter element
– Generates both even and odd nonlinear terms
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Predistortion Linearizer Performance

• Linearization Results of EAM Link at 14 GHz

Gain

Pout

Input Power Backoff (IPBO) in dB
0-200-12

Input Power Backoff (IPBO) in dB

Gain Pout

• Linearized
! Predistortion linearizer 
effectively compensates the 
gain compression

• Non-Linearized
! 4 dB gain compression at 
reference input power 
(saturation)
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Predistortion Linearizer Performance

• Intermodulation Distortion Improvement
– Measured at 6 dB IPBO

Non-Linearized Linearized

• 15 dB improvement in IMD equates to 5 dB 
improvement in SFDR3 
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Optical Linearization
• Example: Optical feedforward coupled 

linearization of Mach-Zehnder modulator
– Third-order cancellation

s
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OMI

AC coupled

0.2(OMI)^3

-0.5sin(piOMI/2)

a2
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0.2(a2)(OMI)^3
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output

delay
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Description
• First MZM generates distortion products

• Amplitudes of distorted detected outputs are:

• 2-tone 3rd-order amplitudes (IMDs) were found by eval. Fourier Series of the output
• Note that fundamental and IMD products are always out of phase

• RF signal is delayed and added to the distorted output
• Level is set to “just cancel” the carriers of the detected signal, leaving just the 
distortion

• Distortion products are re-modulated, and summed with the first modulator 
output.

• Summation must be noncoherent
• Dual lasers or sufficient delay
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Desired Electrical Gains
V1 = Detected MZM1 RF components
V2 = Output from RF coupler
V3 = Detected MZM2 RF components (if there were a detector)

For the two-tone RF case:
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Modeled results with A2 = 4/"
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A2 = 4/" and A1 = 1
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